Maximal Complexifications of Certain Homogeneous Riemannian Manifolds

نویسنده

  • S. HALVERSCHEID
چکیده

Let M = G/K be a homogeneous Riemannian manifold with dimCGC = dimRG, where GC denotes the universal complexification of G. Under certain extensibility assumptions on the geodesic flow of M , we give a characterization of the maximal domain of definition in TM for the adapted complex structure and show that it is unique. For instance, this can be done for generalized Heisenberg groups and naturally reductive homogeneous Riemannian spaces. As an application it is shown that the case of generalized Heisenberg groups yields examples of maximal domains of definition for the adapted complex structure which are neither holomorphically separable nor holomorphically convex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Complexifications of Certain Riemannian Homogeneous Manifolds

Let M = G/K be a Riemannian homogeneous manifold with dimCG C = dimRG , where G C denotes the universal complexification of G. Under certain extensibility assumptions on the geodesic flow of M , we give a characterization of the maximal domain of definition in TM for the adapted complex structure and show that it is unique. For instance, this can be done for generalized Heisenberg groups and na...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

X iv : g r - qc / 9 71 20 71 v 1 1 6 D ec 1 99 7 Riemannian Space - times of Gödel Type in Five Dimensions

The five-dimensional (5D) Riemannian Gödel-type manifolds are examined in light of the equivalence problem techniques, as formulated by Cartan. The necessary and sufficient conditions for local homogeneity of these 5D manifolds are derived. The local equivalence of these homogeneous Riemannian manifolds is studied. It is found that they are characterized by two essential parameters m 2 and ω : ...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003